
Writing Voice Navigable Formal Documents

Beth Ann Hockey, Kim Farrell, Manny Rayner, Nikos Chatzichrisafis, Vladimir Tkachenko

Mail Stop T27A-2
NASA Ames Research Center

Moffett Field, CA 94035

{bahockey, kfarrell}@email.arc.nasa.gov,

{mrayner, nikos}@riacs.edu, vtkachenko@mail.arc.nasa.gov

Abstract
We describe how voice navigable versions of complex task-
oriented documents can be written in an XML format that
encodes extra information specifying how they are to be read
by a voice browser. We focus in particular on the problem of
creating XML representations that can be approved as voice
versions of formal documents. The methods have been
implemented in the context of a voice enabled procedure
browser that will be deployed on the International Space
Station late in 2004.

1. Introduction

There are many situations in which voice navigable
documents would be useful, in particular when the user is
visually impaired, or when the document describes a hands-
and eyes-busy task that is to be executed concurrently. Early
approaches to this problem focused on development of
general voice browsers that could navigate through plain
HTML, for example [1].

Experience rapidly showed, however, that task-oriented
documents are difficult to read effectively without additional
information explicitly related to the task described by the
document. The task information is crucial. In reading out
document, a human will typically say a lot of material in
addition to what is written down; the source of this material
is the human reader’s understanding of the task. Additionally,
some textual material may be paraphrased to make it sound
natural in a spoken context. Without understanding what is
being done with the document, it is not possible to know
how to read it effectively.

The next wave of approaches consequently focused on
this task information. Within the rapidly expanding voice
industry, several standards have emerged: VoiceXML[2]
permits direct definition of pure voice documents, and
SALT[3] and X+V[4] of multi-modal documents. In the
research community, there have been some fairly successful
attempts to develop interactive multi-modal systems that can
browse an abstract task description [5][6].

These second-wave approaches can be effective if it is
feasible simply to replace a document with a task description.
In many cases, however, this is not a realistic option. Here,
we will describe work carried out under the Clarissa
project[7][8], whose goal is to develop a useful voice
browser for procedure documents used on the International
Space Station (ISS). Early versions of Clarissa [7] used the

RavenClaw dialogue manager [6], and replaced the target
document with a RavenClaw task structure.

As the project matured and moved closer to being a
fielded application (an initial field test is scheduled for Nov.
2004), the primary approach became increasingly strained.
ISS procedures are critical formal documents that typically
reflect hundreds or even thousands of person-hours of effort,
and have gone through a lengthy approval process. It is not
practically feasible to replace a document of this kind with a
new structure; it is however equally impossible simply to
read it out verbatim.

The rest of the paper describes the compromise solution
we have developed to resolve this impasse. Clarissa
documents are written in an XML format that contains all
the text and layout information present in the original written
procedure, together with additional information which
specifies how the text is to be read out in the context of
procedure execution. This XML is transformed
automatically both into an HTML display document which
will exactly mimic the appearance of the original paper
document, and also into an annotated structure that can be
followed by the dialogue manager and which will permit the
text to be augmented and paraphrased where appropriate to
enable it to be read aloud in a natural manner. A key point is
that the XML encapsulates all of the procedure text verbatim
as well as capturing the original formatting, making it
reasonable to consider it to be an alternate form of the
original document. This makes it possible for the XML
versions of the procedures to be formally approved for use in
the safety-critical environment of the ISS.

We give an overview of the Clarissa browser in Section
2, and describe the XML format and its interpretation in
Section 3. Section 4 describes the design and approval
process. Section 5 concludes.

2. The Clarissa procedure browser

Astronauts aboard the ISS spend a great deal of their time
performing complex procedures. Crew members usually
have to divide their attention between the task and a paper or
PDF display of the procedure, or one crew member reads the
procedure aloud, while the other performs the task. In either
case, this is an extremely expensive use of astronaut time.
The Clarissa Intelligent Procedure Assistant is designed to
provide a cheaper alternative, whereby a voice-controlled
system navigates through the procedure under the control of
the astronaut performing the task [7][8]. The system

functionality includes spoken dialogue control of navigation
among procedure steps, coordinated display of the procedure
text, ability to set alarms, recording and playback of voice
notes, and a general mechanism for corrections and undos.

The system also includes several modes that are
designed to address different tasks for which procedure
documents are used. The system has a Challenge-Verify
mode for careful procedure execution, when completion of
every step needs to be tracked. Procedure documents are also
used to skim through and refresh the user’s memory of the
steps. Clarissa’s Terse mode supports this task by allowing
the user to move through the procedure quickly, reading
only part of what is written. While executing a procedure a
user might also want to review previous steps, or preview
upcoming steps. The review/preview mode supports this task
by reading and navigating procedure steps without changing
the current step or the record of completion of the procedure
execution in progress. The use of conditional steps also
supports the use of the same document for different tasks.
Procedures can be written with a different set of steps to be
used in different conditions. The same written document
represents several different tasks, each using a different
subset of the procedure steps.

For each procedure, the Clarissa system compiles both
the HTML used for the display and a representation used for
dialogue management from a single XML file. The dialogue
manager is the core of the browser and is designed to be
general in that it does functions and supports conversations
applicable to procedures in general, such as navigation
between steps, corrections, entering and exiting the various
modes, recording alarms and voice notes, and querying the
user for values. For some functions the visual display is
designed to send the dialogue manager the same messages as
would be derived from spoken input so the user’s part of the
conversation can be either speech or mouse clicks. All the
procedure specific information is encoded in the XML. The
browser uses the compiled XML procedures as data. This
enables the ability to drop in an updated procedure without
re-compiling the entire Clarissa system.

Clarissa currently handles five International Space
Station procedures. These procedures are fairly elaborate;
they average approximately 53 steps each and require an
average of 980 lines of XML to represent them.

3. Voice navigable procedures

Our approach to voice navigable procedures requires the
XML to encode the content and formatting of the original
written procedure plus the material that needs to be spoken
to perform the various tasks the document supports. The
spoken version models what a human would read aloud
while using the document to do a task. In some parts of the
procedures the written and spoken versions are the same and
in others they diverge. The divergences are the major source
of complexity in the XML representation.

These divergences arise from basic differences between
the modalities and perhaps even more crucially from the fact
that the spoken version must be adequate for possible values
of the document’s dynamic content as well as the
document’s use. In some cases, the differences are minor:
wording for fluent speech often differs from highly
abbreviated and/or acronym filled text. For example: “H20

vlv �� MSB” would read better as “water valve,
disconnect from micro-sample bag”.

In other cases, visual and spoken structures are so
different that even if one wanted to read that part of the
document verbatim, it would not be clear how to do it.
Tables are a clear example. Visually, a table provides
information in the formatting. One can scan top and side
headers to understand what the values in a table cell mean or
what kind of material should be filled in to the table cell.
Lines typically individuate the cells. What should a spoken
version of a table be like? How do you “read” lines
separating cells, or “read” the spatial layout of the table? A
human reading aloud would probably not give details of the
formatting or read all the headers but would present the table
information in a way motivated by how the table needed to
be used. Was the table to be read out, or filled in? In what
order should cells be read? As an example, consider a task
which the table cells needed to have values filled in. A
human reader will elicit the values incorporating the column
and row header information into a query or directive for each
cell, e.g. “what is the temperature for bag 1” or “give me the
temperature for bag 1”

If microbial sample bag is to be filled

1. Lock bag to hose

2. Perform {1.959 SAMPLE BAG FILL},

steps 6 to 17

3. Measure sample bag temperature

TEST 1 2

Temperature

Figure 1: Written/display version of procedure fragment

S: Step 1. Is microbial sample bag one to be filled?
U: Yes
S: Is microbial sample bag two to be filled?
U: No
S: Step 1. For bag one only, Lock bag to hose
U: next
S: Step 2. For bag one only, Perform procedure number
1.959, SAMPLE BAG FILL, steps 6 to 17
S: Do you want to open this procedure now?
U: Yes
S: Opening procedure number 1.959 …
<user and system do steps 6-17 of the procedure>
U: go on
S: returning to procedure 1.666, going to Step 3
S: Step 3. For bag one only, Measure sample bag
temperature.
U: next
S: What is the temperature for bag one?
U: 25
S: 25, value is nominal
S: increase from last week; nominal

Figure 2: One possible conversation from example XML

Figures 1, 2, and 3 show the display version, a

conversation and the XML for a simplified example.
Comparison of Figures 1 and 2 shows various types of
divergences between the written procedure and the target
conversation that we found were necessary for the ISS
procedures. These divergences have motivated development

of appropriate XML structures to encode them. Most of the
important cases are illustrated in the example; discussion of
them follows.

Invisible & inaudible: The spoken and visual versions
of a procedure can differ for a particular item. In other cases,
there could be material that should only be spoken or only
be displayed. Attributes are used in the XML to mark
material that should be displayed and not spoken (inaudible)
or spoken and not displayed (invisible). All the value steps
inside the table in step 3 of the example are invisible as are
the questions to the user at the beginning of step 1. The
Instruction in step 2 shows an inaudible-invisible pair.

Conditional text & speech: Some steps apply only
when certain conditions are met. This structure supports
selecting a subset of procedure steps to execute based on
various conditions. In the example, Steps 1-3 are only read if
at least one of the bags is being filled. The XML for step one
has the tests for whether bag 1, bag 2 or neither are being
filled enclosed in a conditional (<if>) structure. There is an
ExecutePointer to step 4 in the case that neither bag is being
filled. In this example all the conditional structures are
invisible but this is not required. If a visible step is
conditional, and its conditions are not met, the visual display
grays it out, and it is not read.

Eliciting values: Written procedures have implicit and
explicit conditions based on values that a human user will
have access to, but a computer system may not. For example
“If microbial sample bag is to be filled” in Figure 1. The
corresponding conversation consists of two questions of the
form “Is microbial sample bag X to be filled?” that elicit this
information from the user. Values also need to be elicited
conversationally if the results of measurements or readings
need to be recorded, as in the table in Step 3 of the example.
ValueStep is the XML structure designed to elicit values
from the user. When a value is obtained from the user in a
ValueStep, the user’s response is assigned to a variable. The
minimum and maximum approved values are tested by the
system and the system is able to warn the user if a value is
out of range.

Tables: In step 3, the written procedure has a table with
row and column headings and several cells. The use of a
table in executing a procedure is to collect the relevant
values and record them in the appropriate cells. The XML
for step 3 encodes, for each table cell, a question to the user
eliciting the appropriate value. Each table cell question is
part of an invisible ValueStep.

Comments on values: Step 3 gives additional
information about a value beyond the min and max. The
structures AddendumList and Addendum are used in
ValueSteps to accomplish this. In step three of our example,
the AddendumList tests for an increase relative to last
week’s measurement and then makes appropriate statements.

SpeechBefore: Supports material to be spoken in the
introduction of a step, before the step number. In step 1 of
the example SpeechBefore is used as a verbal marker of the
scope of the initial “If microbial sample bag is to be filled”,
it is set to inform the user which steps apply to which bags.

Setting variables: Used to set variables needed in
execution of steps. In the XML encoding of Step 1 of the
example, ActionBefore sets the $info variable which needs
to be spoken before the step text.

Labeling sections: Procedure text that applies to several
steps is represented in written procedures by indentation and
a vertical line. In the example, “If microbial sample bag is to
be filled” is represented in the XML for display by
LabeledSection and for the spoken version by a series of
invisible value steps.

4. The design and approval process

The critical requirement when creating a voice version of a
procedure is that the result should in a strong sense be the
same document as the original. The procedure writing
community at NASA is very focused on safety
considerations, and any new version of a procedure has to go
through a lengthy sign-off procedure. Extending this
procedure to include voice documents has been one of the
unexpected challenges of the Clarissa project.

During the design phase, our experience has been that it
is unproductive to show the XML directly to the procedure
writers, who generally do not have a background that makes
it easy for them to work with this kind of format. Instead, we
split the document into independent modules, and for each
module write down scenarios exhaustively describing all
possible ways in which the document module can be read
out by the browser. Since the browser is interactive, these
scenarios are in the form of interactive dialogues between
the user and the system, like the one shown in Figure 2. The
scenarios serve as specification documents in the interaction
between procedure writers and voice system implementers,
and are refined until they converge to a mutually agreed
solution.

Using such written scenarios currently imposes practical
restrictions on the types of structures that can be used in
procedure documents, since overly general constructions are
not amenable to exhaustive description in this form.
Additionally, these scenarios are difficult to keep up to date
when requirements and implementation details force changes.
An interesting question for future research is how to develop
ways to generate such scenario documents that both permit
more expressive communications between document writers
and speech developers and that are amenable to automation.
Having a tool to automatically generate expected system
dialogue for common scenarios would also benefit Quality
Assurance teams who need to validate such spoken dialogue
system code. For the Clarissa system, such validation is now
done using manual testing, but this will not scale acceptably
to a system that needs to handle thousands of possible
procedure documents.

5. Summary and conclusions

We argue that the general case of voice navigation of
documents is difficult because knowledge of how the
document is being used is needed to understand what needs
to be spoken. We have described the Clarissa system, and
shown that it is possible to build a voice browser for an
interesting and useful class of documents, using a single
XML format that does not require knowledge of HTML or
the inner workings of the dialogue manager.

An additional benefit is that different procedure writers
would have different ideas on how to structure the dialog.
Using a formal document description enforces uniformity in
dialog style amongst documents.

6. Acknowledgements

We would like to thank Roger Lottridge, Mark Lipsky, and
other members of the NASA Johnson Space Center
Procedure Writing community. The greater part of this work
was performed at the Research Institute for Advanced
Computer Science (RIACS), under Cooperative Agreement
NCC 2-1006.

7. References

[1] F. James, “AHA: audio HTML access”, in Computer

Networks and ISDN Systems, Volume 29, Issue 8-13,
Sept. 1997

[2] VoiceXML Forum. http://www.voicexml.org, as of
April 2004.

[3] SALT Forum., http://www.saltforum.org, as of April
2004.

[4] X+V, VoiceXML Forum.
http://www.voicexml.org/specs/multimodal/x+v/12/, as
of April 2004

[5] Bohus, D. and Rudnicky, A. “LARRI: A language-based
maintenance and repair assistant”. IDS-2002, Kloster
Irsee, Germany.

[6] Bohus, D. and Rudnicky, A. “RavenClaw: Dialog
management using hierarchical task decomposition and
an expectation agenda”. Eurospeech-2003, Geneva,
Switzerland

[7] G. Aist, J. Dowding, B. Hockey, and J. Hieronymus,
“An intelligent procedure assistant for astronaut training
and support,” in Proceedings of the 40th Annual

Meeting of the Association for Computational

Linguistics (demo track), Philadelphia, PA, 2002.
[8] M. Rayner, B. A. Hockey, J. Hieronymus, J. Dowding,

and G. Aist, “An intelligent procedure assistant built
using REGULUS 2 and ALTERF,” in Proceedings of

the 41st Annual Meeting of the Association for

Computational Linguistics (demo track), Sapporo, Japan,
2003.

<LabeledSection display="If microbial sample bag is to be filled">
 <!-- ================= 1st STEP ==================-->
 <Step> <Id>1</Id> <StepTitle>1</StepTitle>
 <StepContents>
 <ValueStep invisible="yes"><Id>1</Id>
 <Instructions>Is microbial sample bag one to be filled?</Instructions>
 <Type>yesno</Type>
 <Var>$fillBag1</Var>
 </ValueStep><Id>2</Id>
 (... similar for bag 2 ...)
 <if invisible="yes" cond="($fillBag1 = no) and ($fillBag2 = no">
 <BasicStep invisible="yes"><Id>3</Id>
 <Instructions>Skipping steps 1 through 3</Instructions>
 <ExecutePointer>step 4</ExecutePointer>
 </BasicStep>
 </if>
 <BasicStep speechBefore="$intro"><Id>4</Id>
 <ActionsBefore>
 <SetVar invisible="yes" cond="($fillTBag1 = yes) and ($fillBag2 = no)">
 <Var>$intro</Var> <Value>"For test 1 only"</Value>
 </SetVar>
 (... similar for cases with bag 2 only and both bags ...)
 </ActionsBefore>
 <Instructions>Lock bag to hose</Instructions>
 </BasicStep>
 </StepContents>
 </Step>
 <!-- ================ 2nd STEP ====================-->
 <Step><Id>2</Id><StepTitle>2</StepTitle>
 <StepContents>
 <SubProcedureCallStep speechBefore="$intro"><Id>1</Id>
 <Instructions inaudible="yes">Perform {1.959 SAMPLE BAG FILL},
steps 6 to 17</Instructions>
 <Instructions invisible="yes">Perform procedure number 1.959, SAMPLE
BAG FILL, steps 6 to 17</Instructions>
 <ProcedureName>Sample Bag Fill procedure</ProcedureName>
 <ProcedureNumber>1</ProcedureNumber>
 <FromStep>6</FromStep>
 <ToStep>17</ToStep>
 </SubProcedureCallStep>
 </StepContents>
 </Step>

 <!-- ================== 3rd STEP ===================-->
 <Step><Id>3</Id><StepTitle>3</StepTitle>
 <StepContents>
 <BasicStep speechBefore="$intro"><Id>1</Id>
 <Instructions>Measure sample bag temperature</Instructions>
 </BasicStep>
 <!--============= Table =============-->
 <Table columns="3" rows="2">
 <TableRow>
 <TableHeader>TEST</TableHeader>
 <TableHeader>1</TableHeader>
 <TableHeader>2</TableHeader>
 </TableRow>
 <TableRow>
 <TableHeader>3. Temperature</TableHeader>
 <TableData>
 <if invisible="yes" cond="$filltBag1 = yes">
 <ValueStep invisible="yes"><Id>2</Id>
 <Instructions>What is the temperature for test bag1?</Instructions>
 <Type>temp</Type>
 <VarName>$bag1TempStep3</VarName>
 <Min>21</Min><Max>30</Max>
 <AddendumList>
 <Addendum cond="$bag1TempStep3 > $bag1TempLastWk">
 <AdTrueText>Increase from last week; nominal</AdTrueText>
 <AdFalseText>no increase from last week;
 off-nominal</AdFalseText>
 </Addendum>
 </AddendumList>
 </ValueStep>
 </if>
 </TableData>
 <TableData>
 (... similar for bag 2 ...)
 </TableData>
 </TableRow>
 </Table>
 <!--============== END of Table ===============�
 </StepContents>
 </Step>
</ClauseWithScope>

Figure 3:XML Representation for simplified procedure fragment

